暑假階段,這時(shí)大家基本已經(jīng)對(duì)高數(shù)的總體有了了解,也許對(duì)很多考點(diǎn)還只是大致的復(fù)習(xí),沒有深入,這個(gè)不要緊,因?yàn)檫有半年的時(shí)間。復(fù)習(xí)是一步一步,循序漸進(jìn)的,不要指望一口氣把什么都掌握,學(xué)習(xí)必然是一個(gè)不斷加強(qiáng)的過程,需要反復(fù)的訓(xùn)練,特別是考研數(shù)學(xué),考點(diǎn)如此之多,想要短期內(nèi)掌握的很好,顯然是不可能的,它是需要一遍一遍的不斷強(qiáng)化復(fù)習(xí)的。
在這一階段的主要目標(biāo)是針對(duì)高數(shù)中的重點(diǎn)考點(diǎn)做強(qiáng)化復(fù)習(xí),對(duì)一般難度和常見題型要做到熟練掌握。
一.函數(shù)、極限與連續(xù)
求分段函數(shù)的復(fù)合函數(shù);求極限或已知極限確定原式中的常數(shù);討論函數(shù)的連續(xù)性,判斷間斷點(diǎn)的類型;無窮小階的比較;討論連續(xù)函數(shù)在給定區(qū)間上零點(diǎn)的個(gè)數(shù),或確定方程在給定區(qū)間上有無實(shí)根。
這一部分更多的會(huì)以選擇題,填空題,或者作為構(gòu)成大題的一個(gè)部件來考核,復(fù)習(xí)的關(guān)鍵是要對(duì)這些概念有本質(zhì)的理解,在此基礎(chǔ)上找習(xí)題強(qiáng)化。
二.一元函數(shù)微分學(xué)
求給定函數(shù)的導(dǎo)數(shù)與微分(包括高階導(dǎo)數(shù)),隱函數(shù)和由參數(shù)方程所確定的函數(shù)求導(dǎo),特別是分段函數(shù)和帶有絕對(duì)值的函數(shù)可導(dǎo)性的討論;利用洛比達(dá)法則求不定式極限;討論函數(shù)極值,方程的根,證明函數(shù)不等式;利用羅爾定理、拉格朗日中值定理、柯西中值定理和泰勒中值定理證明有關(guān)命題,如“證明在開區(qū)間內(nèi)至少存在一點(diǎn)滿足....”,此類問題證明經(jīng)常需要構(gòu)造輔助函數(shù);幾何、物理、經(jīng)濟(jì)等方面的最大值、最小值應(yīng)用問題,解這類問題,主要是確定目標(biāo)函數(shù)和約束條件,判定所討論區(qū)間;利用導(dǎo)數(shù)研究函數(shù)性態(tài)和描繪函數(shù)圖形,求曲線漸近線。
這一部分會(huì)比較頻繁的出現(xiàn)在大題中,復(fù)習(xí)的關(guān)鍵是掌握一般的方法步驟,這就需要多做題目來鞏固掌握,要做到對(duì)一般難度和常見題型有100%的把握。
三.一元函數(shù)積分學(xué)
計(jì)算題:計(jì)算不定積分、定積分及廣義積分;關(guān)于變上限積分的題:如求導(dǎo)、求極限等;有關(guān)積分中值定理和積分性質(zhì)的證明題;定積分應(yīng)用題:計(jì)算面積,旋轉(zhuǎn)體體積,平面曲線弧長(zhǎng),旋轉(zhuǎn)面面積,壓力,引力,變力作功等;綜合性試題。
這一部分主要以計(jì)算應(yīng)用題出現(xiàn),只需多加練習(xí)即可。
四.向量代數(shù)和空間解析幾何
計(jì)算題:求向量的數(shù)量積,向量積及混合積;求直線方程,平面方程;判定平面與直線間平行、垂直的關(guān)系,求夾角;建立旋轉(zhuǎn)面的方程;與多元函數(shù)微分學(xué)在幾何上的應(yīng)用或與線性代數(shù)相關(guān)聯(lián)的題目。
這一部分的難度在考研數(shù)學(xué)中應(yīng)該是相對(duì)簡(jiǎn)單的,找輔導(dǎo)書上的習(xí)題練習(xí),需要做到快速正確的求解。
五.多元函數(shù)的微分學(xué)
判定一個(gè)二元函數(shù)在一點(diǎn)是否連續(xù),偏導(dǎo)數(shù)是否存在、是否可微,偏導(dǎo)數(shù)是否連續(xù);求多元函數(shù)(特別是含有抽象函數(shù))的一階、二階偏導(dǎo)數(shù),求隱函數(shù)的一階、二階偏導(dǎo)數(shù);求二元、三元函數(shù)的方向?qū)?shù)和梯度;求曲面的切平面和法線,求空間曲線的切線與法平面,該類型題是多元函數(shù)的微分學(xué)與前面向量代數(shù)與空間解析幾何的綜合題,應(yīng)結(jié)合起來復(fù)習(xí);多元函數(shù)的極值或條件極值在幾何、物理與經(jīng)濟(jì)上的應(yīng)用題;求一個(gè)二元連續(xù)函數(shù)在一個(gè)有界平面區(qū)域上的最大值和最小值。
這部分應(yīng)用題多要用到其他領(lǐng)域的知識(shí),在復(fù)習(xí)時(shí)要引起注意,可以找一些題目做做,找找這類題目的感覺。
六.多元函數(shù)的積分學(xué)
二重、三重積分在各種坐標(biāo)下的計(jì)算,累次積分交換次序;第一型曲線積分、曲面積分計(jì)算;第二型(對(duì)坐標(biāo))曲線積分的計(jì)算,格林公式,斯托克斯公式及其應(yīng)用;第二型(對(duì)坐標(biāo))曲面積分的計(jì)算,高斯公式及其應(yīng)用;梯度、散度、旋度的綜合計(jì)算;重積分,線面積分應(yīng)用;求面積,體積,重量,重心,引力,變力作功等。
這部分內(nèi)容和題型,數(shù)一考生要足夠的重視。
七.無窮級(jí)數(shù)
判定數(shù)項(xiàng)級(jí)數(shù)的收斂、發(fā)散、絕對(duì)收斂、條件收斂;求冪級(jí)數(shù)的收斂半徑,收斂域;求冪級(jí)數(shù)的和函數(shù)或求數(shù)項(xiàng)級(jí)數(shù)的和;將函數(shù)展開為冪級(jí)數(shù)(包括寫出收斂域);將函數(shù)展開為傅立葉級(jí)數(shù),或已給出傅立葉級(jí)數(shù),要確定其在某點(diǎn)的和(通常要用狄里克雷定理);綜合證明題。
這部分相對(duì)來說可能有難度,但是掌握好還是有辦法的。首先,各個(gè)概念要清楚;其次,對(duì)一般的題型要有把握解答;最后,找一些比較靈活的題型練練自己的思路。
八.微分方程
求典型類型的一階微分方程的通解或特解:這類問題首先是判別方程類型,當(dāng)然,有些方程不直接屬于我們學(xué)過的類型,此時(shí)常用的方法是將x與y對(duì)調(diào)或作適當(dāng)?shù)淖兞看鷵Q,把原方程化為我們學(xué)過的類型;求解可降階方程;求線性常系數(shù)齊次和非齊次方程的特解或通解;根據(jù)實(shí)際問題或給定的條件建立微分方程并求解;綜合題,常見的是以下內(nèi)容的綜合:變上限定積分,變積分域的重積分,線積分與路徑無關(guān),全微分的充要條件,偏導(dǎo)數(shù)等。
這一部分也是考研數(shù)學(xué)中的難點(diǎn),對(duì)上面提到的常用方法要熟練掌握,多做這方面的綜合題來強(qiáng)化。
總之,數(shù)學(xué)要想考高分,2014年的考生必須認(rèn)真系統(tǒng)地按照考試大綱的要求全面復(fù)習(xí),掌握數(shù)學(xué)的基本概念、基本方法和基本定理。注意抓題型的解決方法和技巧,不斷總結(jié)。而這一切的獲得,都是建立在大量的做習(xí)題的基礎(chǔ)上的,但是做習(xí)題不僅僅是追求量,還要保證質(zhì),所謂“質(zhì)”,就是徹底理解所做過的每一道題,而這一點(diǎn)通常顯的更為重要。 |